810 research outputs found

    Prevalence and Risk Factors of Gastrointestinal Disorders in Patients with Rheumatoid Arthritis: Results from a Population-Based Survey in Olmsted County, Minnesota

    Get PDF
    Objectives. To compare the prevalence of gastrointestinal (GI) disorders in rheumatoid arthritis (RA) versus non-RA subjects and to describe determinants of GI disorders in RA. Methods. The bowel disease questionnaire was completed by RA and non-RA subjects. RA patients also completed the health assessment questionnaire (HAQ). Results. The study responders included 284 RA and 233 non-RA subjects. Abdominal pain/discomfort, postprandial fullness, nausea, and stool leakage were significantly more common in RA versus non-RA (odds ratios [OR] = 1.8; 1.9; 4.0; 8.2, resp.). The use of laxatives, proton pump inhibitors, NSAIDs, acetaminophen, and narcotics was more commonly reported in RA versus non-RA (OR = 2.0; 1.7; 3.0; 2.0; 1.9, resp.). Age < 60 and HAQ ≥ 1 were associated with dyspepsia, irritable bowel syndrome, gastroesophageal reflux disease, and GI symptom complex overlap in RA. Conclusion. Several upper and lower GI disorders were significantly more prevalent in RA versus non-RA subjects. Age <60 and physical function impairment (HAQ ≥ 1) were associated with GI disorders in RA

    Rich Feature Distillation with Feature Affinity Module for Efficient Image Dehazing

    Full text link
    Single-image haze removal is a long-standing hurdle for computer vision applications. Several works have been focused on transferring advances from image classification, detection, and segmentation to the niche of image dehazing, primarily focusing on contrastive learning and knowledge distillation. However, these approaches prove computationally expensive, raising concern regarding their applicability to on-the-edge use-cases. This work introduces a simple, lightweight, and efficient framework for single-image haze removal, exploiting rich "dark-knowledge" information from a lightweight pre-trained super-resolution model via the notion of heterogeneous knowledge distillation. We designed a feature affinity module to maximize the flow of rich feature semantics from the super-resolution teacher to the student dehazing network. In order to evaluate the efficacy of our proposed framework, its performance as a plug-and-play setup to a baseline model is examined. Our experiments are carried out on the RESIDE-Standard dataset to demonstrate the robustness of our framework to the synthetic and real-world domains. The extensive qualitative and quantitative results provided establish the effectiveness of the framework, achieving gains of upto 15\% (PSNR) while reducing the model size by \sim20 times.Comment: Preprint version. Accepted at Opti

    Small-worlds: How and why

    Full text link
    We investigate small-world networks from the point of view of their origin. While the characteristics of small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of such a network architecture. In situations such as neural or transportation networks, where a physical distance between the nodes of the network exists, we study whether the small-world topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied. When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity is maximized, a near random network is obtained. In the intermediate regime, a small-world network is formed. However, unlike the model of Watts and Strogatz (Nature {\bf 393}, 440 (1998)), we find an alternate route to small-world behaviour through the formation of hubs, small clusters where one vertex is connected to a large number of neighbours.Comment: 20 pages, latex, 9 figure

    Cytotoxic clinical isolates of Pseudomonas aeruginosa identified during the Steroids for Corneal Ulcers Trial show elevated resistance to fluoroquinolones.

    Get PDF
    BackgroundTo determine the relationship between type three secretion genotype and fluoroquinolone resistance for P. aeruginosa strains isolated from microbial keratitis during the Steroids for Corneal Ulcers Trial (SCUT) and for two laboratory strains, PA103 and PAO1.MethodsConfirmed P. aeruginosa isolates from the SCUT were divided into exoU(+) or exoU(-). The exoU(+) strains contained the gene encoding ExoU, a powerful phospholipase toxin delivered into host cells by the type three secretion system. Isolates were then assessed for susceptibility to fluoroquinolone, cephalosporin, and aminoglycoside antibiotics using disk diffusion assays. Etest was used to determine the MIC of moxifloxacin and other fluoroquinolones. Laboratory isolates in which the exoU gene was added or deleted were also tested.ResultsA significantly higher proportion of exoU(+) strains were resistant to ciprofloxacin (p = 0.001), gatifloxacin (p = 0.003), and ofloxacin (p = 0.002) compared to exoU(-) isolates. There was no significant difference between exoU(+) or exoU(-) negative isolates with respect to susceptibility to other antibiotics except gentamicin. Infections involving resistant exoU(+) strains trended towards worse clinical outcome. Deletion or acquisition of exoU in laboratory isolates did not affect fluoroquinolone susceptibility.ConclusionsFluoroquinolone susceptibility of P. aeruginosa isolated from the SCUT is consistent with previous studies showing elevated resistance involving exoU encoding (cytotoxic) strains, and suggest worse clinical outcome from infections involving resistant isolates. Determination of exoU expression in clinical isolates of P. aeruginosa may be helpful in directing clinical management of patients with microbial keratitis

    Studies on lipase enzyme production by indigenously isolated Bacillus Cereus (BAIT GCT 127002 ) and Bacillus Cereus (BAIT GCT 127001)

    Get PDF
    Microbial lipases holds a prominent place among biocatalysts that act on carboxylic ester bonds.Â&nbsp; This present study involves about eight strains isolated form slaughter house waste water,Coimbatore producing lipase.Among those strains , two bacterial strains exhibiting high lipase productionÂ&nbsp; were identified asÂ&nbsp; Bacillus Cereus (BAIT GCT 127002 ) and Bacillus Cereus (BAIT GCT 127001 ) by both biochemical analysis and 16S rRNA sequencing.Â&nbsp; Initial studies were done for optimizing lipase production using many components such as time course,Carbon sources ,pH and innoculum volume whichÂ&nbsp; revealed maximum lipase acitivity (43.37 U/ml) at 24 hours, usingÂ&nbsp; palm oil , at pH 8 and innoculum volume of 1 ml by Bacillus Cereus (BAIT GCT 127002 ).Further the percentageÂ&nbsp; removal of oil from oil stained fabric was determined using partially purified lipase with or without detergents and the results indicated 20% ,30% removal with use ofÂ&nbsp; crude lipase and commercial detergent respectively.Hence, lipase from Bacillus Cereus(BAIT GCT 127002 ) Â&nbsp;Â&nbsp;can be regarded as an ideal ingredient that can be used in the laundry detergents.Â&nbsp

    Characterization of the Soluble Nanoparticles Formed through Coulombic Interaction of Bovine Serum Albumin with Anionic Graft Copolymers at Low pH

    Get PDF
    A static light scattering (SLS) study of bovine serum albumin (BSA) mixtures with two anionic graft copolymers of poly (sodium acrylate-co-sodium 2-acrylamido-2-methyl-1-propanesulphonate)-graft-poly (N, N-dimethylacrylamide), with a high composition in poly (N, N-dimethylacrylamide) (PDMAM) side chains, revealed the formation of oppositely charged complexes, at pH lower than 4.9, the isoelectric point of BSA. The core-corona nanoparticles formed at pH = 3.00, were characterized. Their molecular weight and radius of gyration were determined by SLS, while their hydrodynamic radius was determined by dynamic light scattering. Small angle neutron scattering measurements were used to determine the radius of the insoluble complexes, comprising the core of the particles. The values obtained indicated that their size and aggregation number of the nanoparticles, were smaller when the content of the graft copolymers in neutral PDMAM side chains was higher. Such particles should be interesting drug delivery candidates, if the gastrointestinal tract was to be used

    Morphology and Oxygen Sensor Response of Luminescent Ir-Labeled Poly(dimethylsiloxane)/Polystyrene Polymer Blend Films

    Get PDF
    Polymer films consisting of a linear poly(dimethylsiloxane) end-functionalized with a luminescent Ir(III) complex (Ir−PDMS), blended with polystyrene (PS), function as optical oxygen sensors. The sensor response arises by quenching of the luminescence from the Ir(III) chromophore by oxygen that permeates into the polymer film. The morphology and luminescence oxygen sensor properties of blend films consisting of Ir−PDMS and PS have been characterized by fluorescence microscopy, atomic force microscopy, and scanning electron microscopy. The investigations demonstrate that microscale phase segregation occurs in the films. In blends that contain a relatively small amount of Ir−PDMS in PS (ca. 10 wt %), the Ir−PDMS exists as circular domains, with diameters ranging from 2 to 5 μm, surrounded by the majority PS phase. For larger weight fractions of Ir−PDMS in the blends, the film morphology becomes bicontinuous. A novel epifluorescence microscopy method is applied that allows the construction of Stern−Volmer quenching images that quantify the oxygen sensor response of the blend films with micrometer spatial resolution. These images provide a map of the oxygen permeability of the polymer blend films with a spatial resolution of ca. 1 μm. The results of this investigation show that the micrometer-sized Ir−PMDS domains display a 2−3-fold higher oxygen sensor response compared to the surrounding PS matrix. This result is consistent with the fact that PDMS is considerably more gas permeable compared to PS. The relationship of the microscale morphology of the blends to their performance as macroscale optical oxygen sensors is discussed

    Cytotoxic Clinical Isolates of Pseudomonas Aeruginosa Identified During the Steroids for Corneal Ulcers Trial Show Elevated Resistance to Fluoroquinolones

    Get PDF
    Background: To determine the relationship between type three secretion genotype and fluoroquinolone resistance for P. aeruginosa strains isolated from microbial keratitis during the Steroids for Corneal Ulcers Trial (SCUT) and for two laboratory strains, PA103 and PAO1. Methods: Confirmed P. aeruginosa isolates from the SCUT were divided into exoU(+) or exoU(−). The exoU(+) strains contained the gene encoding ExoU, a powerful phospholipase toxin delivered into host cells by the type three secretion system. Isolates were then assessed for susceptibility to fluoroquinolone, cephalosporin, and aminoglycoside antibiotics using disk diffusion assays. Etest was used to determine the MIC of moxifloxacin and other fluoroquinolones. Laboratory isolates in which the exoU gene was added or deleted were also tested. Results: A significantly higher proportion of exoU(+) strains were resistant to ciprofloxacin (p = 0.001), gatifloxacin (p = 0.003), and ofloxacin (p = 0.002) compared to exoU(−) isolates. There was no significant difference between exoU(+) or exoU(−) negative isolates with respect to susceptibility to other antibiotics except gentamicin. Infections involving resistant exoU(+) strains trended towards worse clinical outcome. Deletion or acquisition of exoU in laboratory isolates did not affect fluoroquinolone susceptibility. Conclusions: Fluoroquinolone susceptibility of P. aeruginosa isolated from the SCUT is consistent with previous studies showing elevated resistance involving exoU encoding (cytotoxic) strains, and suggest worse clinical outcome from infections involving resistant isolates. Determination of exoU expression in clinical isolates of P. aeruginosa may be helpful in directing clinical management of patients with microbial keratitis
    corecore